Monomial ideals of minimal depth
نویسنده
چکیده
Let S be a polynomial algebra over a field. We study classes of monomial ideals (as for example lexsegment ideals) of S having minimal depth. In particular, Stanley’s conjecture holds for these ideals. Also we show that if I is a monomial ideal with Ass(S/I) = {P1, P2, . . . , Ps} and Pi 6⊂ ∑s 1=j 6=i Pj for all i ∈ [s], then Stanley’s conjecture holds for S/
منابع مشابه
Graph and Depth of a Monomial Squarefree Ideal
Let I be a monomial squarefree ideal of a polynomial ring S over a field K such that the sum of every three different ideals of its minimal prime ideals is the maximal ideal of S, or more generally a constant ideal. We associate to I a graph on [s], s = |MinS/I|, on which we may read the depth of I. In particular, depthS I does not depend on char K. Also we show that I satisfies Stanley’s Conje...
متن کاملMonomial Ideals with Linear Quotients Whose Taylor Resolutions Are Minimal
We study when Taylor resolutions of monomial ideals are minimal, particularly for ideals with linear quotients.
متن کاملAsymptotic behaviour of associated primes of monomial ideals with combinatorial applications
Let $R$ be a commutative Noetherian ring and $I$ be an ideal of $R$. We say that $I$ satisfies the persistence property if $mathrm{Ass}_R(R/I^k)subseteq mathrm{Ass}_R(R/I^{k+1})$ for all positive integers $kgeq 1$, which $mathrm{Ass}_R(R/I)$ denotes the set of associated prime ideals of $I$. In this paper, we introduce a class of square-free monomial ideals in the polynomial ring $R=K[x_1,ld...
متن کاملRigid monomial ideals
In this paper we investigate the class of rigid monomial ideals. We give a characterization of the minimal free resolutions of certain classes of these ideals. Specifically, we show that the ideals in a particular subclass of rigid monomial ideals are lattice-linear and thus their minimal resolution can be constructed as a poset resolution. We then use this result to give a description of the m...
متن کاملComponentwise Linear Ideals with Minimal or Maximal Betti Numbers
We characterize componentwise linear monomial ideals with minimal Taylor resolution and consider the lower bound for the Betti numbers of componentwise linear ideals. INTRODUCTION Let S = K[x1, . . . ,xn] denote the polynomial ring in n variables over a field K with each degxi = 1. Let I be a monomial ideal of S and G(I) = {u1, . . . ,us} its unique minimal system of monomial generators. The Ta...
متن کامل